
AD-4190 359
L Vf ~ U fi l 9 j

I

/

UNCuASSIu ILUE 1NUBH Lg N II i

-l"Jo =8

10

me- 18

J'i 25 1.4 311.6

M(CROCOPY RESOLUTION TEST CHAR

DTIC FILE y~f
AD-A 190 359 PA. . .N ,

4. TITLE (andSubtitle) E 0 ' & P- Oj 0v'.

Ada Compiler Validat=cn Sm,=,ary Rep:A,: 2 , 1987 to 28 Apr 1988 1

IBM Corp. IBM S/370-VM/SP to RT PC-VRM Ada Cross _

Compiler, Ver.2.2.IBM 3081 Host nd IBM RT PC T:irget J'.. REPOPT NJUMB i

7 AUTHOR(s$ CONTkAC' vR GRANI NUMBER(s)
Vright-Patterson AFB

9. PERFOqMING ORGANIZATION AND ADDRESS 10. ROGRAY EL-MET. POCJECT. TASK

Ada Validation Facility _".'A & .ORK UNIT NUL'.DERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPOiI DATE
Ada Joint Program Office 2e Apr :387
United States Department of Defense .
Washington, DC 20301-3081 33

14. MONITORING AGENCY NAME & ADDRSSUfoferentfromConrro/ling iffice) :5. SECUR."e C..ASS (othiSreport)
Wright-Patterson UNCLASSIFIED

15a. jC, ASSJi CATIO 'DOWNGRADING

N/A

Approved for public release; distribution unlimited.

17. D:STRIBUTION STATEMENT (of the abstract entered in Block 20. lfdiff#r, t ifromReport)

UNCLASSIFIED DTIC.fELECTE

18. SUPOEMENTARY NOTES JA V V-- 1U00 i

19. KEyw0RDS (Continue on reverse side ifnecessar andidentif, by n.(' un'. '7

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRAC T (Continue on reverse side if necessary and identify by block number)

See Attached

OD 1u" 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF 'HIS PAGE (WlhenDataEntertd)

EXECUTIVE SUMMARY

This Validation Sunary Report (VSR) sunmarizes the results and conclusions
of validation testing performed on the 1BX S/370 - VM/SP to RT PC - VRM Ada
Cross Conpiler, Version 2.2, using Version 1. 8 of the Adae' Compiler
Validation Capability (ACVC). The IBM VRM Ada Cross Compiler is hosted on
an IBM 3081 operating under VM/SP (using CMS), Version 3.1. Programs
processed by this compiler may be executed on an IBM RT PC operating under
VAM, Version 1.1.

On-site testing was performed 24 April 198-7 through 28 April 1987, at IBM,
Corporation Ir Gaithersburg MD, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 1938 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler., The 19 tests
withdrawn at the time of validation testing, the 278 executable tests that
make use of floatlng-point precision exceeding that supported by the
Implementation, and the 164 executable tests that reqire the creation of
external files were not processed.-After the 1938 tests were processed,
results for Class A, C, D, and E tests were examined for correct execution.
Compilation listings for Class B tests were analyzed for correct diagnosis
of syntax and semantic errors. Compilation and llnk results of Cl ass t
tests were analyzed for correct detection of errors. There were 38 of the
processed tests determined to be inapplicable. The remaining 1900 tests
were passed. -'

The results of validation are simarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 93 205 280 243 161 97 136 262 107 32 217 67 .1900

Failed 0 6 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 4 0 0 3 0 23 0 1 166 480

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134. 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD- 1815A Ada.

I

SAda is a registered trademark of the United States Government
(Ada Joint Program Office).

AVF Control Number: AVF-VSR-68.O787
87-01-21-IBM

Ada" COMPILER
VALIDATION SUMMARY REPORT:

IBM Corporation

IBM S/370 - VM/SP to RT PC -
VRM Ada Cross Compiler, Version 2.2

IBM 3081 Host and IBM RT P Target

Completion of On-Site Testing: .

28 April 1987

Prepared By:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Prepared For: . \
Ada Joint Program Office

United States Department of Defense

Washington, D.C.

'Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

+ Place NTIS form here +
...............

Ada®Campiler Validation Sn-mary Report:

Copiler Name: 1BM S/370 - V.n-.P to RT PC - VRM Ada Cross Compiler,
Version 2.2

Host: IBM 3081 under VM/SP Target: IBM RT PC under VRM,
(using CMS), Version 3.1 Version 1.1

Testing Completed 28 April 1987 Using ACVC 1.8

This report has been reviewed and is approved.

/1/

Ada ValidLtion Facility
Georgeanne Chitwood
ASD/S COL
Wright-Patterson AFB OH 4543 3 -6503

A6 Validation' Organization
Dr. John F. Kramer
institute for Defense Analyses
Alexandria VA

Ada Jnt Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC

TAda is a registered trademark of the United States Government
(Ada Joint Program Office).

EXCUT:VF SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the IBM S/370 - VM/S? to RT PC - VRM Ada
Cross Copiler, Version 2.2, using Version 1.8 of the Ada®, Compiler
Validation Capability (ACVC). The 1BM VRM Ada Cross Compiler is hosted on
an IBM 3081 operating under VM/SP (using CMS), Version 3.1. Programs
proce~eed by this compiler may be executed on an IBM RT PC operating under
VRM, ;--sion 1.1.

On-site testing was performed 24 April 1987 through 28 April 1987 at IBM
Corporation in Gaithersburg MD, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 1938 of the 2399 tests in ACVC Version 1.8
to be processed during on-sIte testing of the compiler. The 19 tests
withdrawn at the time of validation testing, the 278 executable tests that
make use of floattng-point precision exceeding that supported by the
implementation, and the 164 executable tests that require the creation of
external files were not processed. After the 1938 tests were processed,
results for Class A, C, D, and E tests were examined for correct execution.
Compilation listings for Class B tests were analyzed for correct diagnosis
of syntax and semantic errors. Compilation and link results of Class L
tests were analyzed for correct detection of errors. There were 38 of the
processed tests determined to be inapplicable. The remaining 1900 tests
were passed.

The results of validation are sinmarIzed in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 93 205 280 243 161 97 136 262 1C7 32 217 67 1J00

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

inapplicable 23 120 140 4 0 0 3 0 23 0 1 166 480

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSI/MIL-STD-1815A Ada.

!Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

l ~ i mm m m mm mi i • m • mm• aA

TABLF CF CONTENTS

CHAPTER I INTRODUCTION

1.1 PURPOSE OF THIS VA!IDATTN SUMLMARY REPORT 1-2
1.2 USE OF THIS VALIDATLDN :UMMARY REPORT 1-P
1.3 REFERENCES . 1-3
1.4 DEFINITION OF TERMS1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFOPMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESLTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMATION 3-5
3.7.1 Preval-Idatlon3-5
3.7.2 Test Method3-5
3.7.3 Test Site3-7

AFPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Ccmpiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any Implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be Implemented In its entirety, and nothing can be implemented that is
not in the Stardard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. SIx classes of
tests are used. These tests are desiged to perform cheeks at compile
time, at link time, and during execution.

1-I

INT RODU 2T IDN

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

Tnis VSR documents the results of the validation testing performed on an
Ada compiler. Test'-ng was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

* To attenpt to Identify any unsupported language constructs
required by the Ada Standard

* To determine that the Implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, inc., under the

dIrection of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from
24 April 1987 through 28 April 1987 at IBM Corporation in Galthersburg MD.

1 .2 USE OF TH: VAI=DAT:ON SUM..ARY RFEPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided In accordance with the "Freedom of Information Act" (5
U.S.C. #55?). The results of this validation apply only to the computers,
operating systems, and compiler versions Identified in this report.

The orgar-izatlons represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SC(.
Wright-Patterson AFB OH 45433-6503

1-2

Questions regarding this report or the aLat on test results 9nould te

cirected to the AVF listed above or t-:

Ada Validation Orgarlzation
.nstitute for Defense Aralyses
1,301 North Beauregard Street
Alexandria VA 22311

1.3 REFFRENCES

1. Reference Manual for the Ada Programming Language,
ANSI/ML-STD-1815A, February 1983.

2. Ada Validation Organilzation: Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Tmplementers' Guide, SofTech,
Inc., Decenber 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs
that evaluates the conformity of a copiler to the Ada
language specif' cation, ANSI/M1L-STD- 1815A.

Ada Standard ANSI/1 L-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Orgarization. in the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. in the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
deaonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

:NT R DD7 :T DIN

na ppl' cable A test that uses features of the language that a compiler is
test not required to support or may legitimately support in a way

other than the one expected oy the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. -n the

context of -hIs report, the term Is used to designate a
single test, which may cc-mprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Stanrard is measured using the ACVC. The ACVC

contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and specIal program units are used to report their results during
exezution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check thlat legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objectlve has been met. For example, a Class A test z-iecks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the

program executes to produce a PASSED message.

Class B tests check that a compiler detects Illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing Is examined to verify that every syntax or
semantic error in the test is detected. A Class - test is passed If every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FALED, or NOT APPLICABLE message indicating the result when it Is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requi.rements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

C T

permitted in a compilation or the number of units in a li4brary--a compiler
may refuse to compile a Class D test and still be a conforminig compiler.
Therefore, if a Class D test fails to compile because the capacity of tne
compiler is exceeded, the test is classified as inapplicable. If a Class D
Lest compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, tne Ada
Standard permits an implementation to reject programs conta-'ning some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and execu~tes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results.' It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_-FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Stanuard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to veriiy that the units are operating correctly. If these units are not
operating correctlyr, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably pcrtable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customnized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation.

1 -5

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the

following configuration:

Compiler: IBM S/370 - VM/SP to RT PC - VRM Ada Cross Compiler,
Version 2.2

ACVC Version: 1.8

Certificate Number: 870427W1.08045

Host Computer:_

Machine: IBM 3081

Operating System: VM/SP (using CMS), Version 3.1

Memory Size: 64 megabytes

Target Computer:

Machine: IBM RT PC

Operating System: VRM, Version 1.1

Memory Size: 4 megabytes

Communications Network: IBM RT PC 3278 Emulation
(Coaxial cable)

2-1

1- - - - -

CONi3URATI:2N ,NF ,YATD,

?.2 :MPLF1,.fNTATT1,N C2ARACT BRIST- CS

One of the purposes of validating compilers is to determine the oehavior of

a compiler in those areas of the Ada Standard that permit i, piemer.tations

to differ. Class D and E tests specifically check for such implementation

differences. However, tests in other classes also characterize an

implementation. This compiler 's characte ri zed by the followi.ng
interpretations of the Ada Standard:

C apaci ties.

The compiler correctly processes tests containing loop statements

nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17

levels. It correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8

tests), D56001B, D64005E..G (3 tests), and D2900N.)

'Jrversal integer calculations.

An implementation Is allowed to reject univ rsal integer

calculations having values that exceed SYSTEM.MAX TIT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4A002A, D4A002B, D4AOC, A, and
D4A 04B.)

Predefined types.

Thls Implementation supports the additional predefined type
LONG -NTEGER in the package STANDARD. (See tests B86001C and
B86-O',D.)

Based literals.

An implementation is allowed to reject a based literal -th a

va±,.;e exceed.ng SYSTEM.MAX :r during copilation, or it may raise
NUMERIC ERROR or CONSTRTINTERROR durIng execution. This

implementation raises NUFRIC ERROR during execution. (See test

E24 01A.)

Array types.

An implementation is allowed to raise NUMERIC FRROR or

CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD. fNTFEGR' LAST and/or SYSTEM.MAXINT.

2-2

CoNF:GURFT:)N INFDRMATDN

No exception is raised by this implementation for a packed BOOLEAN
array naving a 'LFNGTH exceeding TNTEGER'LAST. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises CONSTRAINTERROR when the length of a dimension
is calculated and exceeds 1NTEGFR'LAST. (See test C52104Y.)

A null array with one dimension of length greater than
TNTEGER'LAST may raise NUMERIC ERROR or CONSTRAINTERROR either
when declared or assigned. Alternatively, an implementation may
accept the declaration. However, lengths must match in array
slice assignments. No exception is raised by this implementation.
(See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible with
the target's subtype. In assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with dlscriminants that is used in an
access type definition with a compatible dlscrlminant constraint.
This implementation accepts such subtype indications. (See test
E381 04A.)

in assigning record types with dlscrlmlrants, the e:xpression
appears to be evaluated in its entirety before CONSTIINT ERROR is
raised when checking whether the expression' s subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

in the evaluation of a multi-dimensional aggregate, the order in
which choices are evaluated and index subtype checks are made
appears to depend upon the aggregate itself. (See tests C43207A
and C43207B.)

in the evaluation of an aggregate containing subaggregates, all
choices are not evaluated before being checked for identical
bounds. (See test E43212B.)

All choices are evaluated before CONSTRAINTERROR Is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3

CON GjU RATION :-NF2RMATION

Functions.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
if it accepts the function declaration, the use of the enumeration
]Iteral's identifer denotes the function. This Implementat'on
rejects the decla-ation. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an Implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject It. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE and 'STORAGE SIZE for tasks, and
'SMALL clauses; it rejects 'STORAGE SIZE for collections.
Enumeration representation clauses, including those that specify
noncontiguous values, appear not to be supported. (See tests
C55B16A, C87B62A, C87B62B, C87B62C, and BC1002A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

input/output.

This implementation supports only the package TEXT 10 for file
operatiors on STANDARD INPUT and STANDARD OUTPUT.

The package SEQUENTIAL 10 cannot be Instantiated with
unconstrained array types an record types with discrimlnants.
The package DIRECT 10 cannot be instantiated w-ith unconstrained
array types and record types with dlscrlminants without defaults.
(See tests AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

Generics.

Generic subprogram declarations and bodies cannot be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies cannot be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

2-4

CHAPTER 3

TEST -NFORMAT:ON

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of

the IBM S/370 - VM/SP to RT PC - VRM Ada Cross Compiler was performed, 19
tests had been withdrawn. The remaining 2380 tests were potentially
applicable to this validation. The AVF determined that 480 tests were
inapplicable to this implementation, and that the 1900 applicable tests
were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable

conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D F L

Passed 66 862 914 17 10 31 1900

Failed 0 0 0 0 0 0 0

inapplicable 3 5 454 0 3 15 480

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-1

TEST INFORIMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 14

Passed 93 205 280 243 161 97 136 262 107 32 217 67 1900

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 4 0 0 3 0 23 0 1 166 480

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The lollowing 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B BC3204C
B33203C B45116A C87B50A
C34018A C48008A C92005A
C35904A B49006A C940ACA
B37401A B4A010C CA3005A..D (4 tests)

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 480 tests were inapplicable for the
reasons indicated:

" C34001D, B52004E, B55B09D, and C55BO7B use SHORTINTEGER which is
not supported by this compiler.

" C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

3-2

TEST INFORMATION

• C34001G and C35702B use LONGFLOAT which is not supported by this
compiler.

. C55B16A makes use of an enumeration representation clause

containing noncontiguous values which is not supported by this

compiler.

• B86001D requires a predefined numeric type other than those

defined by the Ada language in package STANDARD. There is no such
type for this implementation.

• C86001F redefines package SYSTEM, but TEXT 10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXT_10.

" C87B62B uses the length clause 'STORAGE SIZE for access types
which is not supported by this compiler. The length clause is
rejected during compilation.

BA1011C, CA1012A, CA2009C, CA2009F, LA5OO8A..H (8 tests), LA5008J,

LA5008M, LA5008N, and BC3205D compile generic specifications and
bodies in separate compilations which is not supported by this
compiler.

• CA3004E, EA3004C, and LA3OO4A use INLINE pragma for procedures
which is not supported by this compiler.

• CA3004F, EA3OO4D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

LA5008I and LA5008K are inapplicable because, in this
implementation, a generic unit is made obsolete by the
recompilation of a unit on which :he generic body (but not the

specification) depends. Since this implementation does not
support separate compilation of generic unit specifications and
bodies, a generic specification must be considered obsolete
whenever the body is found to be obsolete. These tests should
report at link time that the body of a generic unit is obsolete.
However, a compile-time error message reports that the generic
unit is obsolete.

AE2101C uses an instantiation of package SEQUENTIALIO with
unconstrained array types which is not supported by this compiler.

AE2101H uses an instantiation of package DIRECT 10 with
unconstrained array types which is not supported by this compiler.

The following 278 tests require a floating-point accuracy that
exceeds the maximum of 6 supported by the implementation:

3-3

TEST !NFOMMATIN

02,4113C..Y (23 tests) C35706C..Y (23 tests) C45421C..Y (23 tests)

C35705C..Y (23 tests) C35802C..Y (23 tests) C45424C..Y (23 tests)
C357CC.-.Y (23 tests) C45241C..Y (23 tests) C45521C..Z (24 tests)

C35707C..Y (23 tests) C45321C..Y (23 tests) C45621C..Z (24 tests)

The following 164 tests require the use of external files. This
implementation supports only the files STANDARD-INPUT and
STANDARDOUTPUT:

CE2102C CE3104A CE3411A
CE2102G CE3107A CE3412A
CE2104A..D (4 tests) CE3108A..B (2 tests) CE3413A
CE2105A CE3109A CE3413C
CE2106A CE3110A CE3602A..D (4 tests)
CE2107A..F (6 tests) CE3111A..E (5 tests) CE3603A
CE2108A..D (4 tests) CE3112A..B (2 tests) CE3604A
CE2109A CE3114A..B (2 tests) CE3605A..E (5 tests)
CE2110A..C (3 tests) CE3115A CE3606A..B (2 tests)
CE2111A..E (5 tests) CE3203A CE3704A..B (2 tests)
CE2111G..H (2 tests) CE3208A CE3704D..F (3 tests)
CE2201A..F (6 tests) CE3301A..C (3 tests) CE3704M..O (3 tests)
CE2204A..B (2 tests) CE3302A CE3706D
CE2210A CE3305A CE3706F
CE2401A..F (6 tests) CE3402A..D (4 tests) CE3804A..E (5 tests)
CE2404A CE3403A..C (3 tests) CE3804G
CE2405B CE3403E..F (2 tests) CE3804I
CE2406A CE3404A..C (3 tests) CE3804K
CE2407A CE3405A..D (4 tests) CE3804M
CE2408A CE3406A..D (4 tests) CE3805A..B (2 tests)
CE2409A CE3407A..C (3 tests) CE3806A
CE2410A CE3408A..C (3 tests) CE3806D..E (2 tests)
AE3101A CE3409A CE3905A..C (3 tests)
ZE3102B CE3409C..F (4 tests) CE3905L
EE3102C CE3410A CE3906A..C (3 tests)
CE3103A CE341OC..F (4 tests) CE3906E..F (2 tests)

3.6 SPLIT TESTS

If one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of
smaller tests that contain the undetected errors. These splits are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

3-4

TEST INFOR.AT: D

Splits were required for six Class B tests:

BA3006A BA3007B BA3008B
BA3006B BA3008A BA3013A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the IBM S/370 - VM/SP to RT PC - VRM Ada Cross Compiler was submitted to
the AVF by the applicant for review. Analysis of these results
demonstrated that the compiler successfully passed all applicable tests,
and that the compiler exhibited the expected behavior on all inapplicable
tests.

3.7.2 Test Method

Testing of the IBM VRM Ada Cross Compiler using ACVC Version 1.8 was
conducted on-site by a validation team from the AVF. The configuration
consisted of an IBM 3081 host operating under VM/SP (using CMS), Version
3.1, and an IBM RT PC target operating under VRM, Version 1.1. The host
and target computers were linked via an :BM RT PC 3278 emulation.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The con~ents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled on the IBM 3081, and all executable tests were run on the IBM
RT PC. Object files were linked on the host computer, and executable
images were transferred to the target computer over a coaxial cable via a
3278 emulation capability provided on the RT PC. Each test was executed in
VRM in response to the IPL SVC issued from an AIX shell. (AIX is a
UNIX-like operating system that runs on the RT PC. The reason AIX was used

in the process of running tests on VRM is that VRM has no up/download
capability with CMS, no file structure, and no exec type control language
for automating the process.) Since VRM offers no mechanism for redirecting
I/O to a file (there is no file system in VRM), the package body for the
REPORT package was modified to write output data not only to the console,
but also to a VRM minidisk from which AIX could read it. After the tests
were executed, the results were read from the VRM minidisk and appended to
an AIX results file.

3-5

TEST INFORMATION

The results of execution and the results of linking the Class L tests were
uploaded to the host using a 3278 emulation capability on the RT PC.
Compiler listings, console spools, and execution results were transferred
to another 3081 via a Remote Spooling Communication System (RSCS) for
printing cn an IBM 3800 printer.

The compiler was tested using command scripts provided by IBM Corporation
and reviewed by the validation team. The compiler was invoked through the
use of a CMS execute statement named ART. ART supports the following
options:

BCF Causes the code generator to generate output filenames
according to the working library tag number range. If
either MAIN or BIND are specified in addition to BCF,
a file called MAIN BCF A is created. MAIN BCF A contains
the filenames of all files that must be bound together to
create the executable image. If BCF is not specified,
the compiler uses the input filename for the output
filename.

BIND This option binds a main program which has been previously
compiled as a library unit. When using this option, the
parameter to ART must be the compilation unit name.
This option can be used when a main program has subunits.

INIT Initializes the working sublibrary for the compiler.

LIB Informs the RT compiler generator that this compilation
unit is a library unit, rather than a main unit; in other
words, the program will not be executed directly, but
instead is "withed" by another unit.

LIST invokes the Ada listing tool to produce a source listing
after the compilation. :f errors occur during compilation,
appropriate error messages are interspersed in the listing.

MAIN Directs the Ada RT Compiler to produce code for this unit
as a main program. This program can "with" other programs
and expect to have the "withed" units included and elaborated
at run time.

The following options were in effect for testing:

Single File Tests:

ART acvc filename (MAIN/maincompilationunitname BCF INIT/TSTLIB LIST

Multiple File Tests - the first file is compiled as follows:

ART acvc file name (LIB BCF LIST INIT/TSTLIB

Each subsequent file is compiled as follows (same as first file except
without initializing the compilation library):

3-6

TEST INFORMAT:DN

ART acvc file name (LIB BCF LIST

After all files are compiled, the main is binded as follows:

ART main compilation unit name (BIND BCF

Test output, compilation listings, and job logs were captured on magnetic

tape and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

Trne validation team arrived at IBM Corporation in Gaithersburg MD on 24

April 1987, and departed after testing was completed on 28 April 1987.

3-7

APPENDIX A

DECLARATION OF CONFORMANCE

IBM Corporation has submitted the following declaration
of conformance concerning the IBM S/370 - VM/SP to RT
PC - VRM Ada Cross Compiler.

A-I

-....

DECLARATION OF CONFORMANCE

Compiler Implementor: !BM Corporation
AlaValidation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation 2_pability (ACVC) Ver3.on: 1.8

Base Configuration

Base Compiler Name: IBM S/370 VM/SP to RT PC - VRM Version: 2.2
Ada Cross Compiler

Host Architecture ISA: IBM 3081 OS&VER #: VM/SP (using CMS)
Version 3.1

Target Architecture ISA: IBM RT PC OS&VER #: VRM, Version 1.1

Implementor's Declaration

I, the undersigned, representing IBM Corporation, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-515A in
the compiler listed in this declaration. I declare that IBM Corporation is
the owner of record of the Ada language compiler listed above and, as such,
is responsible for maintaining said compiler in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler listed in this declaration shall be made only in the owner's
corporate name.

'k\V\A5.~SJNDate: __ __ __ __ __
IBM Corporation
Paul W. Weiler, Manager, Ada Products Center

Owner's Declaration

I, the undersigned, representing IBM Corporation, take full responsibility
for implementation and maintenance of the Ada compiler listed above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as

defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target performance are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A.

____________ Date: _ _ _ _ _ _
IBM Corporation
Paul W. Weiler, Manager, Ada Products Center

SAda is a registered trademark of the United States Government

(Ada Joint Program Office).

APPFNDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of ICL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementatlon-dependent characteristics of
the 1BM S/370 - VM/SP to RT PC - VRM Ada Cross Compiler, Version 2.2, are
described in the following sections which discuss topics in Appendix F of
the Ada Language Reference Manual (ANS!/IL-STD- 181 BA). ImplementatIon-
peCifi portor.s of the packzaze STANDARD are also Inclu ed In this

package STANDARD is

type :NTEGER is range -32768 .. 32767;

type LONG IN'TE=R is range -2_147 483 648 .. 2_147_483 647;

type FLOAT is digits 6 range -1.7^141E38 .. 1.70141E38;

type DURATION is delta 2.0"*(-14) range -86 400.0 .. 86_400.0;

end STANDARD;

B-I

VRM Cmvi ier Avpendix F

Praa'~s

Unrecognized and unsupported pragmas are ignored with an appropriate error message.

The pragmas Controlled, Inline, List, MemorySize, Optimize, Pack, Page. Shared.

StorageUnit, and SystemName are not supported.

The pragmas Elaborate. Priority, and Suppress are supported.

The Interface pragma is supported for three languages: C. PL8, and assembly. The
assembly and C interface pragmas are part of the Ada implementation. and should not
be used. The PL8 interface pragma provides calling convention compatible with the

PL8 language.

1-tlementation Defined Attributes

There are no implementation defined attributes.

Representation Clauses

Length Clauses (LRM 13.2) are supported in the following instances:

a. 'StorageSize for task types (not access types)
b. 'Size

c. 'Small

No other representation clauses ar- supported.

Restrictions On Unchecked Conversion

UncheckedConversion between two types (or subtypes) A and B is permitted provided
that A and B are the same static size, and neither A nor B are private.

Interpretation Of Tvpe Address

The type address is implemented as the 32-bit virtual address of the corresponding
object.

B-2

Packaae 5ksten

PACKAGE System IS

TYPE Address is access integer;

TYPE Name IS (TeleSoftAda);

System Name CONSTANT name := TeleSoftAda;

Storage-Unit CONSTANT 8;

Memory-Size CONSTANT 1024w1024;

-- System-Dependent Named Nunhers:

MinInt CONSTANT -(2 N* 31);
MaxInt CONSTANT (2 * 31) - 1;
Max-Digits CONSTANT 6;

MaxMantissa CONSTANT 31;

FineDelta CONSTANT 1.0 / (2 ww (MaxMantissa - 1));

Tick CONSTANT 1.0;

-- Other System-Dependent Declarations

SUBTYPE Priority IS Integer RANGE 0 .. 255;
MaxObject_Size CONSTANT (32*1024)-1;

MaxRecord Count CONSTANT (32*1024)-1;

MaxTextloCount CONSTANT 16*1024;

MaxText IoField CONSTANT 1000;

-- Other Types

TYPE SubprogramValue is

Record

EntryPoint Address;

Static-Base Address;

End Record;

END System;

B-3

Convention Ured For Generatinq Names

Ada names are hashed to 8 character identifiers in the output object code. The

first letter of each 8 character identifier defines the object designated by the

identifier as follows:

B - label used to delimit blocks of code for optimization
D - Static Data (i.e., library package data)
F - Stack frame size for a given subprogram
H - End of subprogram code
L - Literal pool for package
P - Subprogram entry point
R - Label Defining the return code for a subprogram
T - miscellaneous label

X - Exception label

The last seven characters of the identifiers implement the hashing function and have
no particular meaning to the user.

Imole-entation Defined Characteristics For Input-Output Packages.

TextIO is supported for standard input and output only. Text_IO is record ori-
ented, so bytes will not appear until a full record is output (or input) (e.g.,
newline, or putline).

B-4

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIGIDI (.199 => 'A', 200 => '1')
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID2 (1-.199 => 'A', 200 => '2')
Identifier tne size of the
maximum input line length with
varying last character.

$BIG !D3 (1-.100 1 102.-200 => 'A',
identifier the size of the 101 => '3')
maximum input line length with
varying middle character.

$BIG ID4 (1-.100 1 102•-200 => 'A',
identifier the size of the 101 => '4')
maximum input line length with
varying middle character.

$B7GINTLIT (1-.197 => '0', 198..200 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

C-1

TEST PARAMET'FR3

Name and Meaning Value

$BIG RFALLIT (1..194 => '0', 19:..200 =>
A real literal that can be "69.0EI")
either of floating- or fixed-
point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1.180 => '

A sequence of blanks twenty
characters fewer than the size
of the maximum line length.

$COUNTLAST 16383
A universal integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz" &
A string literal containing all "!$%?@\'{}~"
the AS CII characters with
printable graphics that are not
in the basic 55 Ada character
set.

$FIELD LAST 1000
A universal integer literal
whose value is TEXT_10. FIELD' LAST.

$FILE NAME WITH BAD CHARS "XX XX"

An illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAME WITH WILD CARD CHAR "XYZ*I

An external file name that
either contains a wild card
character, or is too long if no
wild card character exists.

$GREATER THAN DURATION 100_000.0
A universa'l real value that lies
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURATION.

$GREATER THAN DURATION BASE LAST 131_072.0
The universal real-value that is

greater than DURATION'BASE'LAST,
if such a value exists.

C-2

TEST ? A RA'T .J

Name and Meaning Value

$1LLEGAL EXTERNAL FILE NAXE1 "BAD/CHARACTE R*%"
An Il-legal exte-nal file name.

$ILLEGAL EXTERNAL FILE NAME2 (1..50 => 'A')
An illegal external file name
that Is different from
$SLLEGAL EXTERNAL FILE NAME .

$1INTEGER FIRST -32768
The universal integer literal
expression whose value Is
:NTEGER'FIRST.

$INTEGER LAST 32767
The universal integer literal
expression whose value Is
INTEGER'LAST.

$LESSTHANDURATION -100 000.0
A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST If any, otherwise
any value in the range of

DURATION.

$LESS THAN DURATION BASE FIRST -131 072.0
The uriversal real value that is
less than DURATION'BASF' FIRST,

If such a value exists.

$MAX DIGITS 6

The universal Integer literal
whose value is the maximum

digits supported for floating-
point types.

$MAX _N LEN 200
The universal integer literal
whose value is the maximum
input line length permitted by
the implementation.

$MAX_ NT 2_147_483 647

The universal integer literal
whose value is SYSTEM.MAX TNT.

C-3

TES. PARAMFFRS

Name and Meaning Value

$'4At LONG LONG NTEGF. R
A name of a preiefined numeric
type other than FLOAT, INTEGE.R,
SHORT FLOAT, SHORT INTEGER,
LON FLOA T, or LONG 1NTEGER

If one exists, otherwise any
undefined name.

$NEG BASED INT 16#iFFFFFFFE#
A based integer literal whose
highest order non zero bit
falls In the si gn bit
position of the representation
f'or SYSTEM.MAX INT.

$NON ASCII CHAR TYPE (NONNULL)
An entzera-ted type definition
for a character type whose
literals are the identifier
NON NULL and all non-ASCii
characters with printable
graphics.

C-4

APPENDIX D

WTMDRAv iN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"A!-ddddd" is to an Ada Commentary.

" C32114A: An untermirated string literal occurs at line 62.

" B33203C: The reserved word "IS" is misspelled at line 45.

SC340*8A: The call f furction G at line 114 Is ambiguous in the
presence of implicit conversions.

'35904A: The elaboration of subtype declarations 3FX3 and SFX4
may raise NUtRIC ERROR instead of CONSTRAINT ERROR as expected in
the test.

B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

C41404A: The values of 'LAST and 'LENGTH are incorrect in the if'
statements from line 74 to the end of the test.

B45116A: ARRPRIBL1 and ARRPRIBL2 are irdtlalized with a value of
the wrong type--PRIBOOLTYPE instead of ARRDRIBOOL TYPE--at line
41.

CU8008A: The assunption that evaluation of default Initlal values
occurs when an exception is raised by an allocator is incorrect
according to Al-00397.

B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

B4A010C The object declaration in line 18 follows a subprogram
body of the same declarative part.

D-1

41THDRAWN TESTS

B B74101B: The eg at line 9 causes a declarative part to be
treated as a sequence of -tatements.

0 C87BS3A: The call of "/=" at line 31 requires a use clause for
package A.

* C92005A: The "/=" for type PACK.B!G 2T at line 40 is not visible
without a use clause for the package PACK.

* C940ACA: The assumptlon that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

• CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" BC3204C: The body of BC3204C0 is missing.

D-2

DATE

RILMED

